

OVER THE TOP: High Flow/Low Head Efficient Pumping at Wastewater Treatment Plants

October, 2012

Presented by: Shawn Kohtz, P.E. Murray, Smith & Associates, Inc.

Overview

High Flow/Low Head Pumping: Rough Definition

Pump Selection

Case Study: Intermediate Pump Station

High Flow/Low Head Pumping Definition

- Total sewer flow at a wastewater treatment plant (WWTP)
 - Location where all flows from a municipality enter a plant
 - Pumping head conditions up to approximately 40-feet
- Focus on dilute wastewater streams
 - Sludge pumping excluded

Example Hydraulic Profile at a WWTP

4667 4667	.88		4665 4663 4663	.73 .44 .04
3.20	c R. 4667.72	4665.62		4665.36
	FINAL CLARIFIER	CHLOR INE CONTAGT CHAMBER CHAMBER	SPEC LAL MANHOO	MANHOLE #2

Overview

High Flow/Low Head Pumping: Rough Definition Pump Selection

Case Study: Intermediate Pump Station

Pump Selection by Application

Common Types	Typical A
Nonclog, Recessed Impeller, Screw Centrifugal, Chopper, Vertical Turbine Solids Handling	Dilute Process Str Pump Station, RAS Primary Sludge, Anaerobic Digeste
Positive Displacement	Sludge
Others (Air Lift, Archimedes Screw Pump)	Various A

pplications

eams: Intermediate 5, WAS, Unthickened , Secondary Scum, er Circulation, others

Pumping

Applications

Analyze System Hydraulics

Q	VELOCITY	h(f)	H(f)	H(s)	TDH	VELOCITY	h(f)	H(f)	H(s)	TDH	exit losses	трн	Flow
(gpm)	(ft/s)	(ft/100ft)	(ft)	(ft)	(ft)	(ft/s)	(ft/100ft)	(ft)	(ft)	(ft)		(ft)	(gpm)
0	0.00	0.000	0.00	-7.62	-7.62	0.00	0.000	0.00	26.47	26.47	0.00	18.9	0
200	0.42	0.007	0.00	-7.62	-7.62	0.25	0.002	0.00	26.47	26.47	0.00	18.9	200
400	0.83	0.026	0.00	-7.62	-7.62	0.50	0.007	0.01	26.47	26.48	0.00	18.9	400
600	1.25	0.054	0.00	-7.62	-7.62	0.76	0.014	0.01	26.47	26.49	0.01	18.9	600
800	1.67	0.093	0.00	-7.62	-7.62	1.01	0.024	0.02	26.47	26.51	0.02	18.9	800
1000	2.09	0.140	0.00	-7.62	-7.62	1.26	0.036	0.04	26.47	26.53	0.02	18.9	1000

Secondary Pump Selection by Pump Curve Data

- Select pumps from manufacturers that best fit system hydraulics
 - Each manufacturer has different best efficiency ranges

Can this pump supplier provide an efficient pump at the flow and head condition for my system?

Variable Frequency Drives (VFDs)

VFDs allow for a wide range of flow conditions and more efficient operation

However, correct pump and motor selection are critical when operating with a VFD

VFD Considerations for Pump Selection

- Select design point to the right of the Best Efficiency Point of a pump
- Understand the minimum speed limitation of a motor
- Motor must be rated for VFD operation

Design for Entire Range of Expected Operation

accommodates operational range

Cost Benefit of VFD Operation

Most energy efficiency gain occurs in

VFD Capital Cost Comparison

□ 20HP VFD w/filter 4,500 (filter = 300) \$3,000 \square 20HP SS

□ 5HP VFD w/filter 2,200 (filter = 220) \$2,900 \Box 5HP SS

VFDs become more expensive relative to soft starts as size increases. List pricing from Rockwell

Overview

High Flow/Low Head Pumping: Rough Definition Pump Selection

Case Study: Intermediate Pump Station

City of Idaho Falls: Primary Effluent Pumping

Need: Pump effluent from the primary clarifier to the secondary treatment process.

Secondary System Adjustments

Upgrade Existing Pump System?

Intermediate Pump Station Design

Retrofit Cost Comparison

Option	Preliminary
Retrofit Existing Pumps	\$1,3
Construct New Submersible Pump Station	\$75

Probable Cost

49,000

56,000

Select Pump Type for the Application

Common Types	Appli
Nonclog mixed flow impeller, Vertical	Dilute Process Stre
Turbine Solids Handling	Pump

Upstream primary clarifier and grit removal systems reduce solids handling requirements of the pumps.

cations

eams: Intermediate Station

Select Pumps to Fit System Hydraulics

- -3301 pump 60 HZ
- -3301 pump 55HZ
- 3301 pump 50 HZ
- -3301 pump 45 HZ
- -3301 pump 40 HZ
- 3301 pump 35 HZ
- --- 50% BEP Curve
- ---- 70% BEP Curve
- --- 100 % BEP Curve
- --- 120% BEP Curve
- 4 MGD @ Normal Operation
- 9.5 MGD @ Normal Operation
- 18 MGD @ normal Operation
- 49 MGD @ Normal Operation
- 4 MGD @ Bypass Operation
- 9.5 MGD @ Bypass Operation
- - 49 MGD @ Bypass Operation

10000

System Design

Pumping Efficiency Cost Savings

Cost Scenario	Continuous Power Demand (hp)	
Existing Pumping System and Secondary Treatment System Power Demand (including aeration)	960	
New Submersible Pumping System Including Secondary Treatment System Demand	615	

Assumed power cost at \$0.05/kW-hr

Annual Power Cost

\$314,000

\$201,000

Pumping Efficiency Cost Savings

- Old pumps are constant speed pumps
- New pumps incorporate VFDs in an efficient range for the selected pump
- New process efficiency in overall system design

Take Home Message

- There are large efficiency gains available when pumps are selected correctly:
 - substantially reduce annual power costs
 - Imit maintenance on pumping systems
 - energy incentive programs encourage pump system upgrades
- Every pumping situation is different. There is no onesize fits all solution for pump systems.

Acknowledgements

- Staff, Mayor, and Council of City of Idaho Falls
- Control Engineers
- Pharmer Engineering

Questions?

Murray, Smith & Associates, Inc.